CHANNEL MODEL OF A STRONG-CURRENT
DISCHARGE IN A RAILGUN
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The "plasma piston" model [1, 2] is often employed in the theoretical analysis of the operation of some
MHD devices with a localized discharge. However, experiments performed on a railgun with an external mag-
netic field showed that at high pressures (p_ < 25 kPa) the measured value of the discharge velocity is sig-
nificantly higher than the value calculated based on the piston model [3]. In later experiments on the same setup
and on a longer channel it was found that there exist two stages of the motion of the discharge already after the
discharge current becomes stationary. At first it fills the entire transverse section of the channel, and the
elevated velocity can be explained by the partial leakage of the gas swept up into the current-carrying region
4]. Then, after 20~25 cm, the discharge is compressed in the transverse direction and then moves so as to
fill not more than 50-60% of the channel cross section [5]. At the same time the flow of part of the pushed gas
around the current region becomes significant.

Detailed analysis of the structure of the flow, which is a difficult problem even for flow around a solid
nondeformable body, becomes even more complicated in this case because the shape of the discharge in the
flow, being very irregular, in its turn depends on the parameters of the flow. In this connection, in this work
an attempt is made to take into account the flow around the discharge in the simplest quasi-one-dimensional
stationary formulation under the following assumptions.

1. The entire region behind the shock wave (Fig. 1) can be divided into three quasi-one-dimensional zones:
the zone of isentropic flow 1 exterior relative to the discharge, the thin thermal layer 2 at the discharge-gas
boundary (transforming into the thermal wake behind the discharge), and the current region itself 3.1

2. The thermal layer congists of a dissociated and discharge-heated gas whose degree of ionization is
much lower than in the current-carrying region, while the velocity of the gas in it equals the velocity of the
external isentropic flow. Unlike the region 1, however, the velocity in the wake is subsonic, as a result of
which the back end wall of the accelerator 4 has a significant effect on the parameters of the entire flow. The
thermal layers are assumed to be thin, so that other effects associated with the presence of these layers, such
as expulsion, etc., are ignored.

3. Convective processes in the discharge 3 are ignored, and the energy balance is calculated in two limit-
ing cases: optically thin plasma, when all of the Joule heat liberated in the discharge is carried away by the
volume radiation, and optically dense plasma, when the discharge emits from the surface as an absolutely black
body. The energy of the radiation is absorbed in the thermal layer and is carried away downstream.

4, The possible detachment of the flow and a vortex in the tail part of the discharge have no effect on the
integral characteristics of the process, since, as will be shown below, the main pressure drop (and, therefore,
the contribution to the resistance force) occurs in the region where the curvature of the side edge of the dis-
charge is small.

Thus the scheme of the flow is as follows (see Fig. 1). The supersonic flow with the velocity u_,, known
pressure p,, and density p_ is decelerated at the front of the shock wave 5, moving away from the discharge
with a velocity D, where a is the half-width of the channel, a(x) is the half-width of the current-carrying re-
gion in the flow, and 0 =x < I. All sections are taken per unit height of the channel h. After the shock wave
the flow in the region 1 is analogous to the flow in a Laval nozzle with the critical section g, — a* and equal
inlet and outlet sections a,. The parameters of the gas at the inlet to the nozzle are uy, pj, and p,, while the
parameters at the outlet are u,, p;, and p,. In the region 0 = x = [, the velocity of the gas, the pressure, and

+In Fig. 1 and below the reference system is tied to the discharge.
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Fig. 1

Using the well-known formulas [6] for isentropic flow in a channel with a

the density equal u(x), p(x), and p(x).
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the condition M =1 for ¢ =a* and equal inlet and outlet sections, we have
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Here M =u/c is Mach's number and + is the adiabatic index. From (1), eliminating M and using (2) and (3),

the form of the discharge a(x) can be related with the pressure p(x)
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In the stationary case the pressure distribution in the region 1 must be identical to that in the discharge,
and the pressure gradient in the discharge is balanced by the force jB (j is the current density and B is the

magnetic induction). Thus
dplox = —jB, 0L 2 << L. (5)

Multiplying both sides of (5) by a(x) and integrating over x we find
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(I is the total discharge current) or in dimensionless form
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Substituting into (6) the expression (4) and carrying out the integration we obtain
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Using the Hugoniot relation at the shock-wave front it is easy to relate the velocity of the incident flow M,, =
U,/ Co With Py /Dot
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where ¢,/ ¢, is the ratio of the velocity of sound behind the shock wave front to the velocity of sound in the in~
cident flow, expressed in terms of py/p,. Based on the foregoing remark about the thermal wake it can be
assumed that in the stationary case the velocity of the gas u, will equal the velocity of the back end wall of the
accelerator, i.e., u; = U, in spite of the fact that M; = u;/ec; > 1. In dimensionless form

19 3
M, 71- -+ = M. (9)
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From the condition that the flow in region 1 sheuld be isentropic we have
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Eliminating M;, M;, and M, from (2), (3), (8), (9), and (10) we obtain
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The solution of this equation together with (7) gives the dependence of p,/ p; on the parameter IB/2a;p,,, and
knowing p,/p, it is easy to calculate based on the formulas presented above all parameters of the flow outside
the discharge in the region x < 0 and x = [. Figure 2 shows the dependence of M, {in the laboratory coordin-
ate system M, is the dimensioniess velocity of the discharge) and p,;/p, on IB/2gp,, for v =1.667, 1.4, 1.333,
and 1.2 (lines 1-4).

The values of p;/p, give the necessary boundary conditions for solving Eq. (5). For accelerators of dense
gases with external magnetic fields B ~ 1-2 T and discharge currents I ~ 10-40 kA the induced electric field
uB is several times weaker than the external field E and can be neglected. Thus j = ¢E (0 is the conductivity
of the plasma). Assuming that the plasma is uniform along the current (along the z axis) and taking into ac-
count the fact that the conductivity of the electrodes is much higher than the conductivity of the plasma, we find
that E is independent of x. Therefore {o solve (5) it is necessary to specify only the dependence of ¢ on p. For
this, we shall examine the energy balance in the current-carrying region.

1. Optically Thin Plasma, The characteristic time of the process in the accelerator ~10~4-1073 sec, so
that on spatial scales $1-10 cm the effect of heat conduction can be neglected. Since convective processes in
the current-carrying region are neglected, in the stationary case

OF = @y for 0<z< 1, lyl < afa). (12)

In the general case the conductivity o and the magnitude of the volume radiant losses QR are functions of the
pressure p and temperature T. Since, however, the analysis carried out here is only of a qualitative character,
we shall take into account the fact that o depends weakly on p, and QR up to a factor of order unity can be rep-
resented in the form Qr(p, T) = qu(T), where g depends only on the temperature., We have

o(T)E® = pqp(T) (13
[o(T) and aR( T) are known functions]. Solving this equation for T and substituting into ¢ (T) we find
¢ = o(p/EY). (14)

For pure air the dependence of ¢ on p/ E? can be approximated well by the expression

o= d(\%)_ﬁ’ (15)
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where @ =0.27 and 8 =0.71, if ¢ is givenin Q - cm, E in V/cm, and p in 10% Pa. Using (15) we obtain from (5)
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Integrating (1) taking into account the fact that p =p; at x =0 we have
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Since p =p; at x =1, we obtain finally
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This expression permits finding the dependence of all remaining parameters of the flow on x /1 in the region
0 <x = 1, as well as the form of the discharge a /g, from (4).

Figure 3 shows p/p,, and a/ a; versus x/I for y =1.4 and py; = IB/ 2q¢p,, = 205 10; 5 (lines 1-3). We
note that the curvature of the wide edge of the discharge is very small in the interval 0.1 =x/ = 0.95. For
large values of pyy the cross section of the discharge in the (x, y) plane is virtually rectangular. This can sub-
stantially simplify the analysis of processes occurring at the periphery of the discharge (the thermal layer 2,
see Fig. 1), where the role of heat conduction will no longer be small. It is well known [7]} that the resistance
force of a body in a free flow at large Reynolds numbers is determined largely by the sharp drop in the pres-
sure in the tail part of the body, caused by the detachment of the boundary layer and formation of eddy flow in
the stagnation zone. In this case, for flow around a body in a channel, the pressure gradient along the flow is
negative, so that detachment, in all probability, can occur only directly near the tail part, i.e., forx /7 > 0.95.
As one can see from Fig. 3 only 10~-15% of the total pressure drop in the flow occurs in the section 0.95 =
x/l =1, so that taking detachment into account does not make a large contribution to the resistance force of
the discharge.

The channel model of the discharge studied above in the approximation of an optically thin plasma con-
tains one undetermined parameter — the length of the discharge [ (or, which is equivalent, the electric field
strength E), which must be obtained from experiment, or it is necessary to introduce the so-called ionization
temperature {8], whose value in general is quite arbitrary. The choice of the local model of heat balance (12)
and the neglecting of processes in the thermal boundary layer preclude the use of variational principles.

2. Optically Dense Plasma. Joule heat is carried out from the core of the discharge to the periphery by
radiant heat conduction, is absorbed in the thermal layer, and carried away downstream. This is essentially
the limiting case of convective heat exchange between the discharge and the gas flowing around it and can be
regarded only as the upper limit of the energy losses in a railgun. As done previously, the thermal layer is
assumed fo be thin. In the case of an optically dense plasma the stationary temperature in the discharge Ty
is identical in the entire region 0 =x =< 1, |y! = a(x) and equals the temperature of the surface of the dis-
charge. We have the following equation of force balance

8plox = —oEB ~ const (18)
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and energy balance
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where og is the Stefan—Boltzmann constant, h is the height of the discharge, and ¢ is the effective emissivity.
The first term on the right side of (19) is the area of the lateral (in the flow) surface of the discharge, while
the second term is the area of the regions near the electrodes. For simplicity we neglect other losses in the
electrode. Making the substitution of variables x — p with the help of (18), we obtain in a dimensioniess form
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or, using (6), we find
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Here a/a is expressed in terms of p/p; and p,;/py from (4), 2egp,/IB from (7), and p,/p, from the solution of
the exterior problem for fixed y and IB/2¢yp,. Thus, Eq. (19') gives a relationship between five dimensionless
parameters of the form
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An analytic expression for & could not be derived, but this function is approximated well by a linear function
of I/oE2a}:
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a* is the critical section of the discharge [see Fig. 1 and (2)]. Indeed, Fig. 4 shows the dependence of the ratio
@ of the right sides of Eqs. (20) and (21) on I/cE2a} for v =1.4 and 2a,/h =1 (ppp =IB/2ayp,, = 2.5; 10; 40 —
curves 1-3). One can see that the linear dependence differs by not more than 20% from the exact dependence.
Using (21)
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Figure 5 shows this dependence for air for y =1.4, 2¢y =4 cm, 2¢;/h =1, & =1, IB /2g,p,, =10. At the same
time py /P, = 17.94, p;/Py =0.0436, and a*/a, = 0.687. The curves 1-4 correspond to I =10, 20, 30, and 40
kA. Since the radiant heat conduction is of a diffusive character and it is assumed that there are no convective
flows in the current-carrying region, the discharge forms a dissipative system, for which the principle of mini-
mum entropy production holds. In application to an electric arc it is known as Steenbeck's principle [9]. As
ohe can see from Fig. 5, the curves E = E(Td) have distinct minima, which makes it possible, by using Steen-
beck's principle, to determine Ty and E, thereby solving the problem completely. As one can see, the value of
E varies in the range 40-50 V/cm, while Ty varies in the range 8500-9500 K. The power liberated in this case
in a discharge of height h =4 cm equals IEh and varies in the range 2-6.5 MW. The experimentally measured
quantity IU ~ IEh, neglecting the voltage drop at the electrodes, is of the same order of magnitude (~5 MW).

It is difficult to make a detailed comparison with experiment, since for molecular gases the voltage on the elec-
trodes undergoes strong pulsations, probably caused by the motion of the sections near the electrodes. The
value of E in the discharge column was not measured directly.

The form of the discharge of an optically dense plasma is virtually identical to the case of a transparent
plasma (see Fig. 3). The tail part is sharper, which is atiributable o the linear dependence of p on x, and the
flat profile for 0.1 < x /I < 0.9 is just as distinct.
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